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I. REVIEW

Last time we:
(1) Stated the maximum modulus principle and used it to prove Schwarz’s lemma.
(2) Computed Aut(D) and Aut(H) using Schwarz’s lemma.
(3) Defined the order of vanishing of a meromorphic function at a point, and defined

the ramification index of a morphism at a point.

II. MORE LOCAL PROPERTIES OF MORPHISMS

II.1. Order of vanishing and ramification.

Definition 1. Let X be a Riemann surface, P ∈ X, and f ∈ M(X) be a meromorphic
function. Let ϕ be a centered coordinate map at P, so ϕ(P) = 0. Then f can represented
by the Laurent series f ◦ ϕ−1(z) = ∑

n
anzn. The order (of vanishing) of f at P, denoted by

ordP( f ) is the smallest n such that an 6= 0:

ordP( f ) := min{n ∈ Z : an 6= 0} .

If ordP( f )n ≥ 1, then f has a zero of order n at P and if ordP( f ) = −n < 0, then f has a
pole of order n at P.

Definition 2. Let f : X → Y be a morphism of Riemann surfaces, P ∈ X. Let ψ be a chart
of Y centered at f (P), so ψ( f (P)) = 0. The integer eP( f ) or mP( f ) given by

eP( f ) := ordP(ψ ◦ f )

is the ramification index or multiplicity of f at P. Equivalently,

eP( f ) = 1 + ordP(ψ ◦ f )′
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whether ψ is a centered chart or not.
If eP( f ) ≥ 2, then P ∈ X is ramification point or branch point of f , with ramification index

eP( f ). A branch value is the image of a ramification point. Equivalently, we say that f is
ramified above Q ∈ Y if there is some P ∈ f−1(Q) with eP( f ) ≥ 2 and f is ramified at P ∈ X
if P ∈ X and eP( f ) ≥ 2.

By choosing our charts judiciously, we can actually find a local representation of a mor-
phism of the form z 7→ zm.

Proposition 3 (Local Normal Form). Let F : X → Y be a nonconstant morphism of Riemann
surfaces. Fix P ∈ X and let m = eP(F). Then for every chart ψ : V → V̂ on Y centered at F(P),
there exists a chart ϕ : U → Û on X centered at P such that

(ψ ◦ F ◦ ϕ−1)(z) = zm .

Proof. Fix a chart ψ on Y centered at F(P) (i.e., ψ(F(P)) = 0), and choose any chart θ :
W → Ŵ centered at P. Then the Taylor series for the function T(w) := (ψ ◦ F ◦ θ−1)(w) is
of the form

T(w) =
∞

∑
j=m

cjwj

where cm 6= 0 and m = mP(F). (Since we picked a centered chart, we have T(0) = 0.)
Factoring out wm, we have T(w) = wmS(w) where S is a holomorphic function at w = 0
and S(0) 6= 0. Thus we can define a branch of the mth root function near S(0), so there
exists a holomorphic function R defined in a neighborhood of 0 such that R(w)m = S(w).
Let η(w) = wR(w), so

T(w) = wmS(W) = (wR(w))m = (η(w))m .

Then
η′(w) = wR′(w) + R(w)

so η′(0) = R(0) = m
√

S(0) 6= 0, so near 0 η is invertible by the Implicit Function Theorem.
Then ϕ := η ◦ θ is also a chart on X defined near P, and since

η(θ(P)) = η(0) = 0 · R(0) = 0

it is also centered at P. Thinking of z = η(w) as our new coordinate near P, then we have

(ψ ◦ F ◦ ϕ−1)(z) = (ψ ◦ F ◦ θ−1 ◦ η−1)(z) = T(η−1(z)) = (η(η−1(z)))m = zm .

�

Lemma 1. Let X : f (x, y) = 0 be a smooth affine plane curve. Consider the projection π : X →
C, (x, y) 7→ x. Then π is ramified at P = (x0, y0) ∈ X iff fy(P) = 0.

Proof. Suppose first that fy(P) 6= 0. Then π is a chart on X near P, so π has multiplicity
1 at P. Conversely, suppose that fy(P) = 0. Then ρ : (x, y) 7→ y is a chart on X near
P. By the Implicit Function Theorem, then there exists a holomorphic function g(y) such
that X is locally the graph of g, so f (g(y), y) = 0 for all y in the domain of g. Implicitly
differentiating with respect to y, we have

fx(g(y), y)g′(y) + fy(g(y), y) = 0
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for all y, so in particular

0 = fx(g(y0), y0)g′(y0) + fy(g(y0), y0) = fx(P)g′(y0) + fy(P) = fx(P)g′(y0) .

Since X is smooth and fy(P) = 0, then fx(P) 6= 0, so we must have g′(y0) = 0. �

Example 4. Let E : Y2Z = X3 − Z3 and consider the map

π : E→ P1

[X : Y : Z] 7→ [X : Z] .

On the affine chart U2 where Z 6= 0, E is given by the equation y2 = x3− 1 where x = X/Z
and y = Y/Z and

π : [x : y : 1] = [X/Z : Y/Z : 1] 7→ [X/Z : 1] = [x : 1] .

Denoting the homogeneous coordinates of P1 by S, T, then π carries U2 to the open subset
V1 of P1 where T 6= 0. On V1 we have the affine coordinate S/T, so the local expression
of π as a map U2 → V1 is simply (x, y) 7→ x. Letting f (x) = x3 − 1 and

h = y2 − f (x) = y2 − (x3 − 1) ,

by the above lemma, π is unramified at all points where hy = 2y 6= 0. Thus it remains to
consider the points where y = 0, consisting of (ζ j, 0) for j = 0, 1, 2, where ζ is a primitive
third root of unity.

At such a point the projection (x, y) 7→ y is a coordinate chart, so there exists a holo-
morphic function g(w) such that

0 = h(g(w), w) = w2 − f (g(w)) = w2 − (g(w)3 − 1)

and g(0) = ζ j. Write g(w) = ∑
n≥0

anwn, so a0 = g(0) = ζ j. Differentiating the above, we

find

0 = hx(g(w), w)g′(w) + hy(g(w), w) = −3g(w)2g′(w) + 2w

=⇒ g′(w) =
2w

3g(w)2 =
2
3

w
g(w)2 .

Thus

a1 = g′(0) =
2
3

0
g(0)2 =

2
3

0
ζ2j = 0

so a1 = 0, as expected. Differentiating again, we find

g′′(w) =
2
3

g(w)2 − w · 2g(w)g′(w)

g(w)4 .

Then

2a2 = g′′(0) =
2
3

g(0)2 − 0 · 2g(0)g′(0)
g(0)4 =

2
3

a2
0

a04 =
2
3

1
a02 =

2
3

1
ζ2j =

2
3

ζ j 6= 0 .

Thus m = 2 is the smallest n ≥ 1 such that an 6= 0, so π has ramification index eP(π) = 2
for P = (ζ j, 0). (There’s one other point we need to check; what is it?)
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II.2. Degree of a morphism. Given a covering map π : X → Y of connected topological
spaces, the fiber π−1(y) has the same cardinality for every y ∈ Y. A nonconstant mor-
phism of Riemann surfaces is a covering map except at its ramification points. But if we
count these points with multiplicity, i.e., weighted by their ramification indices, then the
size of the fiber is again constant.

Proposition 5. Let F : X → Y be a nonconstant morphism of compact, connected Riemann
surfaces. For each Q ∈ Y, define dQ(F) to be the sum of the ramification indices of points in the
fiber F−1(Q):

dQ(F) = ∑
P∈F−1(Q)

eP(F) .

Then dQ(F) is constant, i.e., independent of Q.

Proof. Idea: show that Q 7→ dQ(F) is locally constant. Since Y is connected, then it must be
constant. We illustrate the idea of the proof of local constancy with an example. Consider
the map

f : D→ D

z 7→ zm

for some m ∈ Z≥1. Given 0 6= w ∈ D, then w has exactly m preimages (namely the m mth

roots of w) and eP( f ) = 1 for each of these points P. ( f ′(P) 6= 0 at each of these points.)
The point w = 0 has only one preimage, namely 0, but has ramification index m. Thus we
see that dQ( f ) is constant on D.

To complete the proof, one uses the Local Normal Form theorem that says that all mor-
phisms locally look like z 7→ zm and then keeps a careful count of the number of preim-
ages. �

Definition 6. Let F : X → Y be a nonconstant morphism of compact, connected Riemann
surfaces. The degree of F, denoted deg(F) is defined to be the integer dQ(F) for any Q ∈ Y.

Remark 7. So if d = deg(F), then F is a d-to-1 map.

Corollary 8. F is an isomorphism iff deg(F) = 1.

Remark 9. We will later give an algebraic characterization of degree in terms of the func-
tion field of a Riemann surface.

Remark 10. For those with a background in algebraic number theory, the constancy of
degree may look familiar. Recall the fundamental identity in algebraic number theory: let
L/K be an extension of number fields with rings of integers OK and OL. Given a prime
ideal p ⊆ OK, then pOL = Pe1

1 · · ·P
eg
g for some prime ideals Pi of OL and some ei ∈ Z≥1.

Moreover, we have

[L : K] =
g

∑
i=1

ei fi

where fi = [OL/Pi : OK/p]. We will later make this analogy even sharper using the
language of function fields.
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III. HYPERELLIPTIC CURVES

Given an affine elliptic curve y2 = x3 + Ax + B living inside the affine plane A2, we
can easily find its closure in P2 simply by homogenizing the defining polynomial. Let’s
try to generalize this to what are known as hyperelliptic curves. Let C : y2 = x5 − 1 be an
affine plane curve; let’s try to determine its closure in P2 the same way. Is the resulting
projective curve smooth?

While there are methods to resolve singularities, a more natural construction is the
following. To define hyperelliptic curves, we need a weighted variant of the projective
plane, whose definition we sketch below.

Definition 11. Given g ∈ Z≥1 define the weighted projective plane

P(1, g + 1, 1) :=
C3 \ {(0, 0, 0)}

∼
where (X, Y, Z) ∼ (λX, λg+1Y, λZ) for all λ ∈ C×.

Remark 12. One can similarly define P(a, b, c), however there is some strange behavior
gcd(a, b, c) 6= 1. Note that P(1, 1, 1) = P2.

Just as with the usual projective plane, we have distinguished affine opens U0, U1, U2,
where X, Y, and Z are nonzero, respectively. However, the weights come into play when
defining the standard open sets. We define

U0 → A2

[X : Y : Z] =
[

1 :
Y

Xg+1 :
Z
X

]
7→
(

Y
Xg+1 ,

Z
X

)
U2 → A2

[X : Y : Z] =
[

X
Z

:
Y

Zg+1 : 1
]
7→
(

X
Z

,
Y

Zg+1

)
.

Note the conspicuous absence of a map for U1! One can define a map on U1 similarly
to the above, but it actually won’t be an isomorphism with A2, but rather the quotient
A2/µg+1 of A2 by the cyclic group of (g + 1)st roots of unity.

However, note that U0 ∪U2 covers all of P(1, g + 1, 1) except for the single point [0 :
1 : 0] where X = Z = 0. It turns out that this point will never lie on our models of
hyperelliptic curves, so we can safely ignore it.

Definition 13. A hyperelliptic curve over C is a smooth plane curve given by an equation
of the form

Y2 + h(X, Z)Y = f (X, Z)
(called a Weierstrass equation where f , h ∈ C[X, Z] are homogeneous of degree 2g + 2 and
g + 1, respectively.

Remark 14. Consider F := Y2 + h(X, Z)Y − f (X, Z) ∈ C[X, Y, Z], if we assign X and Z
weight 1 and Y weight g + 1, then F is weighted homogeneous of degree 2g + 2.
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Since C has characteristic 0, we can complete the square and obtain a short Weierstrass
equation:

Y2 = f (X, Z) .

Proposition 15. Let C : Y2 = F(X, Z) be a hyperelliptic curve, so on the open subset U2 where
Z 6= 0, C is given by y2 = f (x), where f (x) = F(x, 1).

(a) The map ι : (x, y) 7→ (x,−y) extends to an involution (i.e., a morphism such that ι2 = id)
defined on all of C. (This is called the hyperelliptic involution.)

(b) The map

π : C → P1

[X : Y : Z] 7→ [X : Z]

is a degree 2 morphism that is ramified above the roots of f , and if f has odd degree, also at
the point [1 : 0 : 0].

Proof. We first consider π on U2, where it is given by (x, y) 7→ x, where x = X/Z and
y = Y/Z. Given Q = x0 ∈ A1, then π−1(Q) consists of the points (x0, y0), where y0 is a
solution of the equation

y2 = f (x0) .
There are two such solutions, counted with multiplicity, so π has degree 2. By constancy
of degree,

2 = deg(π) = ∑
P∈π−1(Q)

eP(π)

so the ramification values of π are exactly the x0 such that there is only one solution y0.
This occurs exactly when f (x0) = 0, i.e., x0 is a root of f .

If f has odd degree, then the weighted homogenization F has a factor of Z. (For in-
stance, if the affine equation for the curve is y2 = f (x) with f (x) = x5 − 1, then the
weighted homogenized equation is Y2 = X5Z− Z6.) Letting Q = [1 : 0] = π([1 : 0 : 0]),
then we compute π−1(Q) by subsituting X = 1, Z = 0 into the equation for C, obtaining
Y2 = 0. Thus π−1(Q) consists of only one point, hence π is ramified at [1 : 0 : 0]. �

IV. DIFFERENTIALS

Some of the notation for defining differentials can be a bit cumbersome, so let’s begin
with an example to fix ideas.

Example 16. Let’s define a differential on P1. Writing [X0 : X1] for the homogeneous
coordinates on P1, recall that we have a holomorphic atlas consisting of the open sets
U0 = {X0 6= 0} and U1 = {X1 6= 0} with coordinate maps

ϕ0 : U0
∼→ C

[X0 : X1] = [1 : X1/X0] 7→ X1/X0

ϕ1 : U1
∼→ C

[X0 : X1] = [X0/X1 : 1] 7→ X0/X1 .
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Denote the coordinates on the images of ϕ0 and ϕ1 by z0 and z1, respectively. Consider
the differential on dz1 on img(ϕ1) = C. Even if you don’t know a rigorous definition for
dz1, you probably know what it is: something we can integrate. (People with background
in differential topology will probably say something about covector fields, but it basically
amounts to the same thing.) So we have a differential on one chart of P1: let’s see if it
extends to all of P1. Let’s work heuristically first. On U0 ∩U1 we have z1 = 1/z0, so we
should have

dz1 = d(1/z0) = −
1
z2

0
dz0

which gives us the expression for dz1 or U0. More rigorously, on U0 ∩U1 z1 and z0 are
related by the transition function ϕ1 ◦ ϕ−1

0 . We have z1 = (ϕ1 ◦ ϕ−1
0 )(z0) which sends

z0
ϕ−1

07−→ [1 : z0] = [1/z0 : 1]
ϕ17−→ 1/z0

so we find
dz1 = (ϕ1 ◦ ϕ−1

0 )′(z0) dz0 .

Definition 17. Given charts (Ui, ϕi), (Uj, ϕj) on a Riemann surface, and P ∈ Ui ∩Uj de-
note the deriviate of their transition function at P by

dzi

dzj
(P) :=

(
ϕi ◦ ϕj

)′
(ϕj(P)) .

Definition 18. A meromorphic differential (one-form) ω on a Riemann surface X consists of
an open cover {Ui}i of X and a collection of meromorphic functions { fi : Ui → C}i for
each i such that

f j = f j
dzi

dzj

on Ui ∩Uj for all i, j. If the fi are holomorphic for all i, then ω is called holomorphic.

Remark 19. We often write this ω|Ui = fi dzi and express the compatibility condition by
fi dzi = f j dzj.

Remark 20. For differential geometers, a differential is a section of the cotangent bundle.
Our definition is really the same thing. What we’ve done is specify an invertible sheaf,
which is often called a line bundle, by specifying its transition functions.

Definition 21.
• Let X be a Riemann surface with an atlas {Ui}i where the local coordinate on Ui is

zi. Given a meromorphic function f ∈ M(X), define
∂ f
∂zi

(P) := ( f ◦ ϕ−1
i )′(ϕi(P)) .

• Given a meromorphic function f ∈ M(X), define the meromorphic differential d f

to be the collection
{

∂ f
∂zi

}
i
. We often express this by writing d f |Ui =

∂ f
∂zi

dzi.
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